

Course syllabus

t

Course title	Information theory for cognitive sciences	
Instructor(s)	Joanna Rączaszek-Leonardi, Szymon Talaga	
Contact details	JRL: Monday 14-15 e-mails: <u>raczasze@psych.uw.edu.pl</u> ; <u>stalaga@uw.edu.pl</u>	
Affiliation	JRL: Faculty of Psychology, University of Warsaw ST: The Robert Zajonc Institute for Social Studies, University of Warsaw	
Course format	seminar	
Number of hours	30 hours	
Number of ECTS credits	 3 ECTS credits 1 ECTS stands for 25-30 hours of students' work, and the 3 ECTS are distributed in the class workload as follows: 30 hours: class attendance, 2 unexcused absences are allowed; missing more than 2 classes (even if justified) requires completing an extra assignment 15-20 hours: reading for classes, at least 1 paper before each class 10-15 hours: preparation of a short presentation for the class 25-30 hours: original project, which uses the notions taught in class and its presentation. 	
Brief course description	The course introduces the basic concepts and measures of information theory. It provides an overview of its practical applications within cognitive sciences and other related fields such as biology, linguistics and social sciences. Limitations of the information theory as applied to cognitive sciences will also be addressed, basing on current discussions of the semantic aspects of information and the link between information-theoretical and thermodynamic entropy.	
Full course description	The course introduces the basic concepts and measures of information theory. It provides an overview of its practical applications within cognitive sciences and other related fields such as biology, linguistics and social sciences. The first part of the class will be devoted to the most important concepts of the theory (entropy, information measures, coding and compression of information, complexity). Next we will present applications of the measures designed within the theory of information in physics, biology, neuropsychology, linguistics. Finally, the limitations of information theory as applied to cognitive sciences will also be addressed, basing on current discussions of the semantic or pragmatic aspects of information and the link between information-theoretical and thermodynamic entropy.	

Learning outcomes	 Students after completing the course will be able to: Describe the history of the notion of the quantity of information, efforts to formalize it in relation to research on and modeling of cognitive systems. (K_W01, K_W02) Define the most important concepts of the theory (information quantity, entropy, mutual and joint information) and use mathematical formulas to compute them. (K_W01, K_W08) Indicate the main areas of application for the measures of information within cognitive sciences and related disciplines. (K_W02, K_U01, K_U03, K_K02) Use terminology pertaining to information theory and its application. (K_W08) Discuss information-theoretic problems with specialists from other fields. (K_U07, K_K07) Formulate questions within cognitive science, which can be answered using information-theoretic measures. (K_U02; K_K06)
Learning activities and teaching methods	 The seminar will consist in: Presentation of information theory main concepts and measures; homework problems will be assigned to test students' understanding. Problems can be discussed in class. Students are expected to introduce 1 paper during the class (20 minutes) and initiate and guide the discussion of the paper. Students, individually or in pairs will conduct a small research project: Students will formulate a research problem, gather simple datasets and use information theory measures to answer research questions.
List of topics/classes and bibliography	 Introduction. Range of problems for information theory. Communication and Information. Gleick: Information: Prologue, Chapters 1,6,7; optional: Chapter 8,9,13. Additional readings/tutorials on probability theory and logarithms. Mathematical bases of information theory: entropy, conditional entropy, mutual information Cover, T. M., Thomas, J. A. (2006). "Elements of Information Theory", New York: Wiley. Chapter 2. Mathematical bases of information theory: relative entropy, divergences & data processing inequality Cover, T. M., Thomas, J. A. (2006). "Elements of Information Theory", New York: Wiley. Chapter 12. Mathematical bases of information theory: relative entropy, divergences & data processing inequality Cover, T. M., Thomas, J. A. (2006). "Elements of Information Theory", New York: Wiley; Chapter 1&2. Kullback-Leibler divergence: formulation & applications (presenter, discussion leader) Data Processing Inequality: principle & applications (presenter, discussion leader) Sufficient statistics and Maximum Entropy Principle

- a. Weaver, W. Recent contributions to the mathematical theory of communication. & Shannon, C. "The Mathematical Theory of Communication" (selected fragments). In: Shannon, C. & Weaver, In: The Mathematical Theory of Communication. The University of Illinois Press: Urbana. (presenters, discussion leaders)
 b. Brillouin, L. (1969). Nauka a Teoria Informacji. Rozdział 1.
- 5. Applications: Neurobiology
 - Tononi, G.; Edelman, G.M.; Sporns, O. Complexity and coherency: Integrating information in the brain. Trends Cognitive Science 1998, 2, 474–484 (fragments till p. 480, without "Reconciling information processing and information storage: matching complexity") (presenters, discussion leaders)
- 6. Applications: Language
 - a. Zipf, G. K. (1964). "The Psychobiology of Language: an introduction to dynamic Philology." Rozdział II "The Form and Behavior of Words" (recommended)
 - b. Piantadosi, S.T. "2014 Zipf 's word frequency law in natural language: A critical review and future directions" Psychon Bull Rev (presenter, discussion leader)
 - c. Coupé et al. (2019). Different languages, similar encoding efficiency: Comparable information rates across the human communicative niche. *Science Advances*, Vol. 5, no. 9, eaaw2594, DOI: 10.1126/sciadv.aaw2594 (presenter, discussion leader)
- 7. Applications: Networks & structure
 - a. Introduction to Networks
 - Klein, B., & Hoel, E. (2020). The Emergence of Informative Higher Scales in Complex Networks. Complexity, 2020, 1–12.
 - (presenter, discussion leader)

8. Algorithmic information theory

- a. Cover, T. M., Thomas, J. A. (2006). "Elements of Information Theory", Chapter 14 (fragments).
- b. Intro to algorithmic information theory

9. Complexity Measures I

Soler-Toscano, F., Zenil, H., Delahaye, J.-P., & Gauvrit, N. (2014). Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines. PLoS ONE, 9(5), e96223.

https://doi.org/10.1371/journal.pone.0096223

(presenter, discussion leader)

- b. Gauvrit, N., Zenil, H., Soler-Toscano, F., Delahaye, J.-P., & Brugger, P. (2017). Human behavioral complexity peaks at age 25. PLOS Computational Biology, 13(4), e1005408. https://doi.org/10.1371/journal.pcbi.1005408
 (1 presenter, 1 discussion leader)
- 10. Complexity measures II: Information, energy, cognition

	a.	Lloyd & Pagels, 1988, Complexity as Thermodynamic Depth, ANNALS OF PHYSICS 188, str. 186-191		
		(recommended).		
	b.	Klamut, Kutner & Struzik, 2020, Towards a universal		
		measure of complexity, Entropy (recommended)		
	с.	Deacon, T. & Koutroufinis, S. (2014). Complexity and		
		Dynamical Depth. Information, 5, 404-423. (presenters,		
		discussion leader)		
11. Can Shannon information be a basis for semantic information?				
	a.	Hasselman, F. (2022). Radical embodied computation:		
		Emergence of meaning through the reproduction of		
		similarity by analogy ()) (recommended)		
	b.	Isaac, A. (2019) The Semantics Latent in Shannon		
		Information.		
		(presenters, discussion leader)		
	12. – 14. P	roject presentations @ mini conference		
Assessment methods and criteria	40% Project and its presentation 30% Short paper presentation and guiding the discussion 20% Homework(s) 10% Class presence and active participation			
Attendance rules	Attendance to the seminar is obligatory, 2 unexcused absences are allowed.			
Prerequisites	CMP I, philosophy of mind course, basic skills in math, probability			
		bhy of mind course, basic skills in math, probability		
Academic honesty	Students must plagiarism (incl sources) are se	respect the principles of academic integrity. Cheating and uding copying work from other students, internet or other rious violations that are punishable and instructors are ort all cases to the administration.		
	Students must plagiarism (incl sources) are se required to rep The project pre	respect the principles of academic integrity. Cheating and uding copying work from other students, internet or other rious violations that are punishable and instructors are		